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SUMMARY 
The solution for the stress transport turbulence model equations for the situation where the flow is 
unidirectional is now commonly applied to flows with weak secondary currents in closed ducts, open 
channels, and rod bundles in nuclear reactor channels. Here, perturbations to the unidirectional flow 
solutions are studied by solving the exact equations using an iterative procedure. Now the equations 
also contain the small lateral velocity gradients formerly neglected. The applicability as well as the 
limitation of the use of the unidirectional flow turbulence model for the description of channel flow 
with lateral motion are discussed. Modifications for weak lateral motion are suggested. 
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1. INTRODUCTION 

A direct outcome of the development of the stress transport turbulence models is the ability 
to predict correctly the fact that shear flaws are associated with two substantially different 
normal stresses in the lateral plane. This achievement permitted the prediction of the 
secondary currents in various configurations of channel flows. For this purpose a solution was 
developed for the stress transport equations in local equilibrium conditions for the unidirec- 
tional flow where the flow, being in a single direction, has derivatives with respect to the two 
co-ordinates in the lateral plane perpendicular to the main flow. 

This solution, also referred to as the algebraic stress model, was applied by Launder and 
Ying,' Tatchel? Gessner and Emery: Neti and Eichhorn4 and others to the calculation of 
secondary currents in square duct flow; and by Gosman and Rapley,' Benodekar and Date,6 
Trupp and My7 to the calculation of flow in non-circular domains including rod bundles in 
nuclear reactors. Recently, the authors applied the model to the prediction of secondary 
currents induced by the free surface in open channels (Rodi and Naot'). the use of the 
algebraic stress model is attractive as it is more simple with respect to full stress transport 
calculations (Naot et a[?, and Reece'O). It is therefore important to examine its limitations. 

In the present work the limitations due to the fact that the lateral velocity gradients are 
not considered in the evaluation of the production of the turbulent stresses are discussed. It 
became apparent, also, that attempts to include in future calculations other sources of weak 
lateral motion such as thermal-gravity driven motion, lateral weak injections, channel 
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curvature driven currents, etc., will require modifications to the algebraic stress model based 
on the unidirectional flow. 

The inclusion of the lateral mean velocity gradients in the calculation of the turbulent 
stress production is considered here as perturbation. Special reference is made to three 
aspects: 

(i) estimation of perturbations typical for channel flow, 
(ii) attempts to account for the perturbations 

and 
(iii) estimation of the overall effect in square ducts. 

These are important steps for research groups developing computing algorithms for flows 
in engine passages, channels and rod bundles in nuclear reactors. The present work is 
associated with the work performed at the S.F.B. 80, University of Karlsruhe, in the context 
of mathematical modelling of turbulent flow in rivers and open channels. 

2. THE UNIDIRECTIONAL FLOW ALGEBRAIC MODEL 

Basically the algebraic stress models are derived from the stress transport turbulence model 
equations assuming a hypothetical condition of local equilibrium where the production of 
turbulence balances its dissipation. In  that case the model equations defined by Naot er a/? 
and Launder el al." transform to: 

Here, 

k is the turbulence energy, E is the energy dissipation rate and a, 8, y and C, are the model 
coefficients. Here r = iwll ,  and the energy k = ?=. The numerical coefficients considered are 
the near wall set given in Reference 11, a = 0.704, @ = -0.169, y = -0.273, C1 = 1.0. 

The unidirectional case is the special situation where the flow has vanishing mean velocity 
gradients except for aU/ay and aujaz. In that case equation (1) transforms to 
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and 

Here 

is the angle formed between the z-axis and the tangent to the streamwise velocity contours. 
Equations (5)-(9) can be solved for the turbulent stresses. The solution given in terms of 

the mean velocity gradients, the turbulent energy, the energy dissipation rate, and the model 
coefficients is commonly referred to as the algebraic model. The algebraic steps, not shown 
here, were first given by Launder and Ying.' Recently Naot" showed that the solution can 
be simply derived from the shear flow solution by merely rotating the co-ordinates. 

An interesting feature of the algebraic model is the observation that the two main shear 
stresses, TiE and LEG, can be calculated using the same eddy viscosity pt 

and 

at3 m=-pt-, 
az 

with 

u, = C,k% 
and 

1 c, = B(1 -a)(a +2p + c, - 1) + p(3 -2a - p + c, - 1) - rc11- 9 c: 
This analytic result stemming from equations (5)-(9), simplifies considerably the numerical 
calculations of the streamwise mean velocity as it permits the use of methods based on scalar 
eddy viscosity, such as the S~alding-Patankar'~ algorithm. 

Another important feature of the algebraic model is the observation that the stresses 
which control the secondaky currents can be calculated directly from the main streamwise 
velocity gradients ae /ay  and aolaz: 

and 

This is a major simplification in the numerical simulation of secondary currents3-' as we may 
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use equations (14), (15) and (16) to prepare and store the motivating sources of the lateral 
momentum equations before solving these equations. 

The advantages of the algebraic model are therefore apparent. Still, the algebraic model is 
based on the unidirectional flow which is an idealization of channel flow and may lead to 
errors. The objective of the present work is to estimate the errors made by not accounting 
for the lateral mean velocity gradients typical of channel flows, in the calculation of the 
production of the stresses. To this end an iterative procedure for the solution of the full 
stress transport model equations in the conditions of local equilibrium was developed. 

3. AN lTJ3RATIVE PROCEDURE 

The algorithm is based on successive substitutions of an approximate solution into the full 
stress balance equation given in the form: 

Here, the upper index (n) denotes the iteration counter. At each iteration new values for w. 
are obtained by substituting the values calculated at the former iteration in the right-hand 
side of equation (9). In  addition, to satisfy the condition of local equilibrium the dissipation E 

was adjusted at each iteration and was set equal to the production T. The procedure was 
found stable as is shown for the case of shear flow in Figure 1. Still, to accelerate 
convergence the new stresses were under-relaxed to 50 per cent. The results, also shown in 
Figure 1, emphasize the role of the under-relaxation as a practical means of reducing the 
number of iterations. 

Apparently the procedure is very simple and its application for the numerical 
evaluation of the turbulent stresses is straightforward. Unfortunately, this is not -necessarily 

1-1 Figure 1. Convergency of shear 
5 10 15 stress iE in Shear Flow (4 = 0)  
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so if one wishes to use the new iterative procedure to adjust continuously the algebraic 
model in numerical calculations of developing three-dimensional channel flows. In that 
case the procedure should be used in the innermost loop. Since the innermost loop is 
performed for each grid node and is iterated a few times for each streamwise step,13 a 
substantial increase in computing time is expected. Therefore, the authors decided not to 
apply the procedure for that purpose at the present time. Instead, typical perturbations were 
studied on the basis of 100-iteration runs and simple corrections to the algebraic model were 
suggested. 

4. SMALL PERTURBATIONS 

Three types of small derivatives were added to the basic unidirectional flow in order to 
examine the influence of the lateral velocity gradients. The perturbation imposed consisted 
of 

a w  a Q  a w  a V  (I) -, (11) and (III) -= -- az ay ' dY 

representing lateral shear, (I} and (11), as well as lateral strain (111). For weak perturbations it 
is plausible to assume linearity of the effects. We therefore assume that the three perturba- 
tions represent all other possibilities for which estimations can be obtained simply by a 
superposition rule. The three perturbations imposed are defined by: 

and 

Assuming the maximum of the lateral gradient of the streamwise velocity 0 to be in the 
y -direction, the angle q5 was restricted to 0 < q5 <45" for practical reasons. 

The results are given in Figures 2-7. Obviously, the solutions for 6 = 0 represent the 
unidirectional solutions. Observing the results we should note that 6 = 0.05 and S = 0-10 are 
relatively high with respect to the values which characterize the lateral motion in straight 
closed ducts and open channels. Such values however, may be reached in curved channels 
and in the case of lateral injection into channel flow. 

Generally the deviations from the unidirectional flow solutions show two types of effects: 
(a) The influence of the lateral velocity gradients on the main stresses iiU and EF, as shown in 
Figure 3, 5 and 7; (b) The influenceof the lateral velocity gradients on the stresses which 
control the secondary currents wz, u2 and EF, as shown in Figures 2, 4 and 6. 

The complete understanding of the results is not simple, as we base our intuition on the 
concept of scalar eddy viscosity. Indeed, equation (17) implies that as far as previous 
iterations result in non-vanishing trace 2k = a, an additional iteration will contain among 
other terms: 
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Figure 2. Stresses controlling 
lateral motion subjected to 

lateral shear I 

with 

Unfortunately equation (22) provides an explanation only for the deviations of the second 
type as will be shown in Section 5 .  

In Figures 3 and 5 the influence of the lateral shear expressed by i5* and a2 on the main 
stress is shown. For example, with S1 and riZ smaller than 0.05 we do not expect 
deviations in ii5 greater than 10 per cent. The influence of the lateral shear on iiF is 
somewhat more pronounced. Still, we should recall that this stress is of less importance in the 
calculation of the streamwise mean velocity. The most pronounced deviations from the 
unidirectional solution are due to the lateral strain as shown in Figure 7. Now, we find 
deviations greater than 10 per cent already for 6, greater than 0.02. Following the example 

Figure 3. The main shear 
stresses ZE and UW subjected 

to lateral shear I 
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Figure 
lateral 

4. Stresses controlling 
motion subjected to 
lateral shear I1 

and defining an acceptable percentage error, one may derive from Figures 3, 5 and 7 the 
upper bounds for S1, S2 and S3 which still permit use of equations (11) and (12) for the 
calculation of iZ and EE, respectively. 

The influence of the lateral shear expressed by S1 and S2 on the normal stresses 3 and 2 
is shown in Figure 2 and 4. Since deviations greater than 10 per cent are associated only with 
6 ,  and S2 greater than 0-08, we conclude that these stresses are practically unaffected by the 
presence of lateral shear. The deviations, due to the lateral strain shown in Fi we 6, are 
more pronounced. Now deviations greater than 10 per cent in both 2 and w are found 
already for S3 greater than 0.02. The lateral stress fi is practically unaffected by the lateral 
strain as shown in Figure 6.  This is not the case when lateral shear is considered as shown in 
Figure 2 and 4. Since the unidirectional solution for i% vanishes for small 4, the relative 
error made by using equation (16) for E F  may reach a high percentage no matter how small 
S1 and S2 are. Since the region of small 4 is very important, as discussed in Section 6, a 
simple approximation for these trends is needed and is now given. 

4 

10 20 30 40 

Figure 5 .  The main shear 
stresses iiij and iiij subjected 

to lateral shear I1 
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Figure 6.  Stresses controlling 
lateral motion subjected to 

lateral strain 

5. SIMPLE APPROXIMATION 

To describe the deviations from the unidirectional flow solutions of the second type we 
suggest: 

- 
10 20 30 40 

Fig. 7 .  The main shear stres- 
ses iZ and iiE subjected to 

lateral strain 
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I 1 

Figure 8. The turbulent 
Prandtl numbers 

Here ul, m2 and u3 are parameters with a physical interpretation of turbulent Prandtl 
numbers. 
In Figures 2 and 4 deviations of the lateral shear stress iiW from the unidirectional flow 

solution (6 = 0) are given. It was found possible to calculate these deviations using equation 
(24) and the values of ul and u2, given in Figure 8. In Figure 6 deviations of the lateral 
normal stresses 3 and W’L from the unidirectional solution (6 = 0) are given. The values of 0, 

needed in order that equations (25) and (26) describe these deviations are also shown in 
Figure 8. The importance of the approximation for the description of secondary currents in 
channels is now discussed. 

6 .  STRAIGHT CHANNEL FLOW 

First, we should show that the deviations from the unidirectional flow solutions are of 
importance and should not be neglected in the calculation of channel flow with weak lateral 
motion. To this end calculatedas9 secondary currents in square duct flow were examined, and 
it was found that the three 8’s are usually smaller than 0.01. Only those very close to the 
corner may reach values of about 0.03. Thus, apparently we should not be bothered by these 
perturbations. 

Still, near the walls the situation is different. Here, + vanishes and is less than 6” for almost 
90 per cent of the channel walls. In that case the errors made in describing UT by means 
of equation (16) may become large. For example, a2 = 0.03 and 4 = 6” results in 50 per cent 
errors in EiG. Since the lateral stress EiC is the main agent via which the lateral motion is 
damped by the wall, the overall prediction of the secondary currents may show large errors. 

To examine this, equations (a), (25) and (26) with (rl =a2 = u3 = 1 were added to the 
unidirectional solution and were applied to the calculation of square duct flow. the results 
showed a reduction of 50 per cent in the lateral velocity adjacent to the walls, thus proving 
the importance of the deviations from the unidirectional flow solution. 

7. CONCLUDING REMARKS 

The overall accuracy of numerical simulation of channel flow with lateral motion depends on 
many factors including the model coefficients, wall proximity functions, etc. The present 
work was aimed at isolating the effects of neglecting the lateral velocity gradients in the 
calculation of the turbulent stress production. 

It is recommended that the simple approximations given in Section 5 be used even if the 
lateral motion is weak. It seems that correcting 5, 7 and 2 is sufficient as far as 

[ V + W]”’/ 0 < 0-05. 
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However, with stronger lateral motion the authors feel that simple approximations such as 
are given here may be an over-simplification and that a more complete model will be 
needed. In that case it will be necessary to correct all the turbulent stresses, including the 
main stresses i i C  and ii%. 

APPENDIX: LIST OF SYMBOLS 

Free redistribution model coefficient 
Eddy viscosity coefficient 
Part of the forced redistribution model 
Mean rate of train 
Turbulence energy 
Iteration index 
Velocity fluctuations 
Mean velocity 
Streamwise mean velocity 
Lateral mean velocity 
Streamwise co-ordinate 
Lateral co-ordinates 

Greek symbols 

a, 0, y 
Sij Kronecker delta 
S1, Sl, S3 Small perturbations 
E Turbulent energy dissipation 
CLt Turbulent eddy viscosity 
7T Turbulent energy production 
“ii Turbulent stresses production 
a,, a,, a, Turbulent Prandtl numbers 
4 Isovel inclination angle 

Forced redistribution model coefficients 
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